- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Vanthieghem, A (3)
-
Fiuza, F (2)
-
Levinson, A (2)
-
Mahlmann, J F (1)
-
Nakar, E (1)
-
Philippov, A A (1)
-
Sekiguchi, K (1)
-
Spitkovsky, A (1)
-
Todo, Y (1)
-
Tsiolis, V (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& *Soto, E. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Vanthieghem, A; Tsiolis, V; Spitkovsky, A; Todo, Y; Sekiguchi, K; Fiuza, F (, Physical Review Letters)
-
Mahlmann, J F; Vanthieghem, A; Philippov, A A; Levinson, A; Nakar, E; Fiuza, F (, Monthly Notices of the Royal Astronomical Society)ABSTRACT The radiation drag in photon-rich environments of cosmic explosions can seed kinetic instabilities by inducing velocity spreads between relativistically streaming plasma components. Such microturbulence is likely imprinted on the breakout signals of radiation-mediated shocks. However, large-scale, transverse magnetic fields in the deceleration region of the shock transition can suppress the dominant kinetic instabilities by preventing the development of velocity separations between electron–positron pairs and a heavy ion species. We use a 1D five-fluid radiative transfer code to generate self-consistent profiles of the radiation drag force and plasma composition in the deceleration region. For increasing magnetization, our models predict rapidly growing pair multiplicities and a substantial radiative drag developing self-similarly throughout the deceleration region. We extract the critical magnetization parameter σc, determining the limiting magnetic field strength at which a three-species plasma can develop kinetic instabilities before reaching the isotropized downstream. For a relativistic, single ion plasma drifting with γu = 10 in the upstream of a relativistic radiation-mediated shock, we find the threshold σc ≈ 10−7 for the onset of microturbulence. Suppression of plasma instabilities in the case of multi-ion composition would likely require much higher values of σc. Identifying high-energy signatures of microturbulence in shock breakout signals and combining them with the magnetization limits provided in this work will allow a deeper understanding of the magnetic environment of cosmic explosions like supernovae, gamma-ray bursts, and neutron star binary mergers.more » « less
An official website of the United States government
